riISCurcC

When Hardware Attacks

sCaI e

Marc Witteman

Croatian Summer school 2017

Attack exploitation space: time vs distance \

FISCUreC
Remote

Fast oW

Hardware attacks require:
* hardware vulnerabillities, or
* hardware changes to target

LocC

Attacker business case FISCUCC

p = profit
v = value
n = replications &
c, = variable costs <>

c; = fixed costs

Let’s analyze some known attacks FISCUre

1. EMV Man-in-the-Middle
Hardware attack to bypass PIN verification of stolen payment cards

2. Retail hack
Network penetration attack to retrieve cardholder credentials

3. Card sharing
Relay attack to avoid paying TV subscription fees

EMV Man-in-the-Middle (1) ASCUCC

Normal PIN check

2. PIN correct?

3. check i ,
smart card 4. yesina terminal
Fraudulent PIN check 1. enter any PIN
I;;'Ian-ln- . 2.is PIN correct?
. the- 2
stolen m'fldle 3. yes (for any PIN) terminal
smart card

Source: https://www.cl.cam.ac.uk/research/security/banking/nopin/

EMV Man-in-the-Middle (2) ASCUCC

! BRARRRS

Retall hack

Attacker phishes a
3rd party contractor

Attacker finds &
infects POS systems
wi/malware

A Attacker uses
stolen credentials
to access
contractor portal Attacker finds &
infects internal
Windows file server
2 '

Lr\: N

< O Stolen data is
exfiltrated to FTP
servers

)JJ_}

riISsCurce

Malware scrapes
RAM for clear text
CC stripe data

| Malware sends CC
data to internal
server; sends custom
ping to notify

Card sharing (1) FIscure

» Pay-TV decoders use smart cards
to control video access

©
S
(
3
3

» Subscription is in smart card

Card sharing (2) Fiscure

Internet

 Pay-TV decoders use smart cards
to control video access

» Subscription is in smart card

 Distribution of session keys avoids
need for individual subscriptions 9

Example attack business cases FISCUrC

Attack Fixed Variable Value Replications Profit
Cost Cost

EMV MitM € 30K €100 € 500 100 € 10K

Retail hack € 20K €1 €25 10K € 220K

Card sharing € 10K €10 €100 1M €9o0M

Replications are key, but how Is that bounded?
* Application size (e.g. #potential victims)

* Replication effort

« Detection & mitigation

Hardware attacks require substantial replication effort
Can they be scalable? 10

Attack phases riscure

ldentification Exploitation

What it Is finding a vulnerability run on target

Frequency once repeated
Speed slow fast

Skill expert script-kiddy
Equipment expensive cheap

| ocation local remote

Scalable attacks need software exploitation! -

How to find software vulnerabilities? FlSCUrG

Black-Box L White-Box J

Model Based Fuz7in Binary Source Code
Testing J Analysis Review

Attackers method Defenders method

Effectiveness

Most vulnerabilities are found white-box style! 12

Finding vulnerabilities in source code riscure

Software packages typically
vary between 10 and 10,000 KLoC
have 0.1 up to 10 vulnerabillities per KLoC

-> All products have software vulnerabilities

Manual source code review performs at 100 LoC/hr

- Finding a vulnerability in source code may take just one day

13

Binary analysis FISCure

.. iy C:\Docaments aod Satfings\oialOuskizpW 1 4vIO8_0,000. bin
e Vew E& Settrgn Wirdown

Tomt

0002000
SCOO3008
CO000010
Q00001 %
Q00000
002024
CO00C0 30
COO0202
0000040
CQO00004N
0000080
Q000058
o000
SCO0O0¢Y
0000070
SO000 TS
CQO0000
CQ002000
00000
CO0020
SO0000A0
CQO030AN
SC0000R0
Lo Delely) 2
0000000) ve o sl
$O0000CH : 00.0L4)

U
.

el
SRR

o
-

D90 O

QeNewe
SRR

SGO0U0L0
CC000I#
Q000 IO
0002018
aslitenli} 4
0000
CA0001 00
SO000100
0002110
SLUe I DR
000120
CO0001 2%
GO 30
Co002130
(e e] X 2
Q002140

.« NOEE
du.
L NN
02.20%8
| B4 2
V4
8..421R

Firmware structure analysis ASCUre

) \
/ + ' gy i —
3 ol | Key block
packed |
loader 25 '
/(\
boot loader 1 packed
. | main
application

| | | | | | |
0 500000 1et06 1.5e+t06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+0¢

Disassemble

CODE:D0LB4DFF
CODE : 004 84E 85
CODE : 004 04E A
CODE : 084 84E OF
CODE 00404514
CODE - 98504E18
CODE : 085 845E 21
CODE :DBR0KE26
CODE:D040LE2B
CODE : 08484E2C
CODE : 00404E31
CODE : 98585E 36
CODE : 90504E 38
CODE : 085045 408
CUODE - D05845E 41
CODE - 005 084E 46
CODE : 004 84EA4B
CODE : 08404%E50
CODE : 005 04E55
CODE :90404E56
CODE :00504L58
CODE 0058560
CODE : 084 B4E S

OF
68
ES
A3
83
oF
68
Al
50
ES
A3
68
A1
58
LS8
A3
68
A1l
58
EB
Ad
68

85
DA
C9
20
3D
Bh
Eh
20

77
04
Fo
20

62
o8
FC
20

4D
ac
uc

Ca
RE
EB
B1
28
AB
HE
B1

EB
D3
KE
B1

LB
D3
4E
B1

EB
D3
hF

415
40
FF
40
81
89
40
40

FF
40
40
49

FF
4O
4O
40

FF
46
40

0o
0o
FF
0o
40
0o
00
8o

FF
00
06
0o

FF
0o
0o
a0

i
00
00

08
UL

Nz
push
call
nov
cmp
12
push
nov
push
call
nov
push
nov
push
call
nov
push
nov
push
call
nov
push
nov

riISsCurce

1oC NOAELCY

ofFfset LibFileName ;
LoadLibraryf
ds:hModule, eax

ds :htodule, 0

loc 484ECY

offFset abDbddevopen 8 ; "DbdDevipen™
eax, ds:hModule

eax ; hModule
GetProcAddress

ds :DbdDevipen, eax

offset aDbddevclose 8 ; "DbdDevClose™
eax, ds:hModule
Pax -
GetProcAddress

ds :Dbdbevllose, eax

offset aDbddevgetinfo ; "DbdDevGetinfo”
eax, ds:hModule

Pax ; hModule
GetProcAddress

ds :DbdDeviGetinfo, eax

offset aDbddevregistercallback 8 ; "Dbdl
eax, dsihModule

“"DbdDevAPI .dl11"

hModule

BN

lac_g0ocl3en:

add.iu il! I.IIIII:
jal- F1

ui 3§50, 0xECO:
benQz W,

14 fe0, ArFat]

jump to parse_firmwareheader

1oc_g000138c

A " Fail

¥ ¥

= N EA NI

la $L, print_serial

jalr L loc _g000133C:

10 fa0, fs0 1a §l, calc_chechksum
jalr ¥l
nop
beqz fvid, Toc_g0o0lZes

Flow analysis

1a

§l, grint_serial

¥ Y
EAM I EA NI
jale 1
1ot _g00n13ad: Mo Fad, £=0
] ToC_2000L2E4
nap

B ML

loc_gOC013EE:

1a FL, wverify_s°gnatiars
jalr §i

nap

beqz w0, Toc_S000L3E4

Ta $1, print_serial

¥ ¥ ¥
EA NI H NI EAN
jalr 21
loc_g00013E0: N a0, Es0 loc_gO0013E4:
i loc_gad0l3igd 14 $1, wnpack_Timmears
nap jal= 41
nap
beqgz v, Toc_s0001410

Ta i1, p

rint_serial

loc_g0001323C:

rap

] la=_200012D0C

EAHIL

loc_E0J101410:

14 $1, checksur_unpacked_firmeare
jalr $1

Fap

begz Fwil, Toc_E000id3C

$1, primt_serial

14
[I

¥ L

=) EAHILL B
jalr 1
1oz_g0001406: mawe fao, Fs0 ‘OC_BD001&3C:
i lToc_s0001408 R Fvl, =2=7FOCCSQp)
naa jalr vl # run @ unpacked be
Sigd $vl, —-a=7FFCCCEgQp]
addiu $s5p, =2

System Interface

S905

DDR3/IL & LPDDR2/3 | NAND/eMMC/INANDI SPI NOR
Memory Controller | tS5D Flash Controller Flash Controller
Cortex-AS53 Cortex-AS3
I (: Mali-450 | Mail-450
Pa — V SO 32KB I'D-Cache | 32KE l'D-Cache Gp ap
TS Input x2 m NEON/VFP NEON/VFP

Cortex-453 Cortex-453 ﬁll-ﬂ!ﬂ Mall-350
EH{B Iﬂ]-ﬂlﬂl‘l- H-!F.H IHJ-EHH-I-]5]

Eﬁﬁ L2 Cache -.“ 50

A B = Poweer
el F"I LTSN
Video Engine
(& IEIIF:I
Cryplo sacunad N
Engine Elorage

Input/Output Interfaces
Giga SDXC -
USE OTG Ethernet | SDHC/ ISO7816 SAR ADC UART
MAC S0 Gt

e Trustzone based Trusted Execution Environment (TEE)

* Secured boot, encrypted OTP, internal control buses and storage

e Protected memory regions and electric fence data partition

* Hardware based Trusted Video Path (TVP) and secured contents (needs SecureQS5 software)

Source: http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

Secure boot chain broken by backdoor riscure

Marmal Werld Trusted Warld
Attacker used
BL3 2™ level
: Boot Loader -
3 : Public sources
= | (BLZ2) loads
BL33 BLZ all 3 level
(Alternative) TEdEs
- Boot Loader
T .
K V4> image
' M 18t level
g | : : Boot Loader
(BL1) loads
' B L 1 2 level
_ : Image
BL31 '
<::| RESET
. Glossary | " Key
! BL - Boot Loadar i
I EDK2 - EFI Developrrent Ki 2 i EL3 Execution
o St Lo '
i —x'::-'..-I“'-'-:r.'.-:-' Exabe Conirol nderiace i EL2 Expouticn

Boot Loader header analysis leCUre

struct aml_img_header {// 64 bytes
unsigned char magic[4];// "@AML"
uint32_t total _len;

Analysis & experimenting showed that

Lint8 t header len: sig_type selects different key lengths, or none!
uint8_t unk_x9; o :
Gint8 tunk XA Code Certificate Signature
uint8_t unk_xB; l, 1, l,
At Hash Get key Verify

[uint32_t sig_type;] D)
uint32_t sig_offset; l' ‘l' l'
uint32_t sig_size; Hashed code Public key Verified Sig
uint32_t data_offset;
uint32_t unk_x20; ¥
uint32_t cert_offset; Select
uint32_t cert_size; -
uint32_t data_len; Compare

uint32_t unk_x30;
uint32_t code_offset;
uint32_t code_len;
uint32_t unk x3C;
}aml_img_header t; 20

Recent hack on WI-FI chip ASCUCG

Samsung

Project Zero

News and updates from the Project Zero team at Google

Over The Air: Exploiting Broadcom’s Wi-Fi Stack

Source: https://googleprojectzero.blogspot.fr/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html

Stack buffer overflow in WI-FI B oo I o
SoC enables remote code wvcoer, | 13
)] . Running Firmuweare Logic -— 3
execution within WI-Fl range = =
| C°g‘1'_2°" F—.T—b AXIZAPB
Complex multi-step attack e SOTERAE)
7
Used public utility to do memory dump! | ,G
Leveraged information from other chips ‘ + +
| _ _ — 1 [+
Affects both 10S and Android devices el ERE oy |5 cH:

Diplexer
Fommmmmm e mmm o m o buffer --------—cmcmmm——————— e e L
i I
] |
] |
] |
i i
: I
Transa. Fast Transition IE |
Link I} Reason Dialog ; Attacker
IE Code | Token Seq | Tag Length —— MIC Anonce Snonce By Controlled
CTRL Space Da 2 2

0 20 22 23 24 2D 26 28 =4 [Li 108 239 20 + FTIE Length

Reducing risk with encrypted software

Start

Start

Binary
exposes |
erability)

lelds runtime
con

riISsCurce

Encrypted software hides binary code

Black-Bcy nenetratisii iesting

exneses logical vuinerahility

3lack-Box penetration testing very inefficient

< ~\
Hardware attack
breaks software

\confldenUaIlty -

-)
Binary analysis

exposes logical

Exploitation
—> yields runtime

. vulnerability)

control

Hardware attack offers two-step alternative:
1. Break software confidentiality
2. White-box binary analysis exposes logical vulnerability

Exploitation
yields runtime
control

23

Conclusions FISCUre

Scalable attacks need software exploitation
o Hardware attacks are laborious
o Software vulnerabilities are ubiquitous
o Software exploits are easy to reproduce

Software encryption Is inevitable for security
o Binary analysis very successful in identifying vulnerabilities
o Increasing number of products use encrypted software

Hardware attacks are scalable when
o Software Is encrypted
o Shallow bugs (detectable black-box style) are absent
o Used in the identification step to extract software
o Deep software vulnerabilities are present

24

rISCUre
Challenge your security

Contact: Marc Witteman
witteman@riscure.com

[Riscure Is hiring, visit https://www.riscure.com/careers/ }

Riscure B.V. Riscure North America
Frontier Building, Delftechpark 49 550 Kearny St.

2628 XJ Delft Suite 330

The Netherlands San Francisco, CA 94108
Phone: +31 15 251 40 90 +1 (650) 646 9979

WWW.riscure.com inforequest@riscure.com

